SKF Faserverbund-Buchsen

SKF

Die wartungsfreie Hochleistungsbuchse

- Hohe Tragfähigkeit
- Korrosionsbeständig
- Wartungsfrei

Wartungsfrei, langlebig, kostensparend

Hochleistung mit Faserverbund

Die SKF Faserverbund-Buchsen sind wartungsfreie und korrosionsbeständige Hochleistungsgleitlager. Sie werden in einer aufwändigen Faserwickeltechnik hergestellt. Der hochfeste Rückenaufbau erfolgt mit Glasfasern, die Gleitschicht wird aus PTFE- und Kunststofffasern gewickelt. Beide Lager sind in Epoxidharz gebettet. Mit dieser Werkstoffwahl werden die besonderen mechanischen Eigenschaften von Glasfasern mit den hervorragenden tribologischen Eigenschaften von PTFE und den hochfesten Kunststofffasern vereint.

Niedrigere Betriebskosten durch SKF Faserverbund-Buchsen

SKF Faserverbund-Buchsen sind sehr gut für Umgebungen mit hoher Korrosionsgefahr und für hohe Belastungen bei niedrigen Gleitgeschwindigkeiten geeignet. Durch die besonderen Eigenschaften dieser Hochleistungsbuchsen bieten sich dem Anwender eine Vielzahl von Möglichkeiten zur Senkung der Betriebskosten:

- kompaktes, kostengünstiges Design
- längere Gebrauchsdauer
- reduzierte Wartungskosten
- geringere Energiekosten

Eine hohe Tragfähigkeit (→ Diagramm 1) ermöglicht ein kompaktes und kostengünstiges Design. In kritischen Umgebungen haben Faserverbund-Buchsen eine erheblich längere Gebrauchsdauer als andere Gleitlager, da ihre Gleitschicht eine sehr hohe Verschleißfestigkeit aufweist.

Der Anwender profitiert von weniger Ausfällen, einem niedrigeren Wartungs- und Instandhaltungsaufwand und einem geringeren Ersatzteilbedarf. Das bedeutet: Die Verfügbarkeit ist höher und die Betriebskosten sind niedriger. Die ausgezeichneten Gleiteigenschaften des Lagers halten den Energiebedarf niedrig.

Wartungsfreie Gleitlageranordnungen senken die Entwicklungs-, Fertigungs- und Schmierkosten, da weder Schmierstoffgeber noch -bohrungen, -nuten und Schmierfett benötigt werden. Der schmierstofffreie Betrieb schont die Umwelt, denn der Anwender muss keinen Altschmierstoff entsorgen.

SKF Faserverbund-Buchsen sind in unterschiedlichen Durchmessern und Breiten erhältlich

2 **5KF**

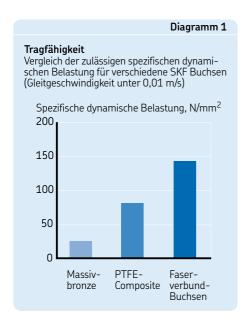
Weitere Vorteile von Faserverbund-Buchsen

SKF Faserverbund-Buchsen bleiben auch dann noch funktionsfähig, wenn die meisten anderen Gleitlager bereits ausgefallen sind oder gewartet werden mussten. Folgende Eigenschaften sind dafür verantwortlich, dass Faserverbund-Buchsen eine sehr hohe Betriebszuverlässigkeit und lange Gebrauchsdauer haben:

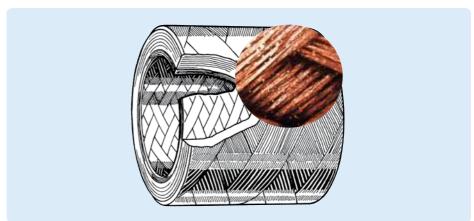
- Gute Stoßverträglichkeit
- Sehr geringe Empfindlichkeit gegen Kantenbelastungen und damit gegen Fluchtungsfehler
- Gute geräusch- und schwingungsdämpfende Wirkung

- Ausgezeichnete Beständigkeit gegenüber korrosiven Medien, auch Salzwasser, und vielen Chemikalien (→ Tabelle 1, Seite 4).
- · Gute Isolierung gegen Stromdurchgang

Faserverbund-Buchsen in anspruchsvollen Anwendungsfällen


SKF Faserverbund-Buchsen sind ausgezeichnet für hohe Belastungen, hohe Schwingungspegel und korrosive Umgebungen geeignet. Typische Anwendungsfälle sind:

- Baumaschinen aller Art
- Land- und forstwirtschaftliche Maschinen und Geräte


- Hebe- und Transportvorrichtungen
- Stahl- und Stahlwasserbau
- Metallbearbeitungsmaschinen
- Verpackungsmaschinen
- Offshore-Einrichtungen

Umfangreiches Produktsortiment

Das umfangreiche SKF Standardsortiment umfasst Buchsen für Wellendurchmesser von 20 bis 200 mm und in jeweils drei Standardbreiten von 15 bis 250 mm. Andere Maße sind auf Bestellung lieferbar.

Längsschnitt durch die Gleitschicht, der die Fasern in verschiedenen Wickelrichtungen erkennen lässt

SKF Faserverbund-Buchsen in einem Müllwagen

... in einem Forstwirtschaftsgerät

... in Meeresumgebung

5KF 3

Tabelle 1

Chemische Beständigkeit von SKF Faserverbund-Buchsen

Bei Raumtemperatur beständig gegenüber

Alkohole Ethylalkohol Iso-Butylalkohol Iso-Propylalkohol

Laugen – 10 % Kalziumhydroxid Magnesiumhydroxid Kaliumhydroxid Natriumhydroxid Säuren – 10 % Essigsäure Borsäure Zitronensäure Salzsäure Schwefelsäure

Öle Baumwollsamenöl Motoröl Getriebeöl Hydrauliköl Leinöl Mineralöl Gase
Acetylen
Butan
Kohlendioxid
Äther
Wasserstoff
Erdgas
Stickstoff
Ozon

Schwefeldioxid

Propan

Benzin Diesel Freon Formaldehyd

Sonstiges

Tabelle 3							
Betriebsspiel und mittleres Übermaß zwischen Gehäuse und Buchse							
Buchse Bohrung		Betriebs (Welle h&		Mittleres Übermaß (Gehäuse H7)			
über	bis	min	max	(Geriause 117)			
mm		mm		mm			
18 30 50	30 50 65	0,065 0,080 0,100	0,228 0,279 0,336	0,041 0,050 0,061			
65 80 100	80 100 120	0,100 0,120 0,120	0,336 0,394 0,394	0,067 0,081 0,089			
120 140 160	140 160 180	0,145 0,145 0,145	0,458 0,458 0,458	0,104 0,112 0,120			
180	200	0,170	0,514	0,135			

		Tabelle 4					
Werkstoffeigenschaften							
Eigenschaft	Einheit	Wert					
Zulässige Belastung – dynamisch – statisch zulässige Gleitgeschwindigkeit	N/mm ² N/mm ² m/s	140 200 0.5					
Reibungszahl μ	_	0,03 0,08					
Temperaturbereich	°C	-50 +1 40					
Wärmeausdehnungskoeffizient (ähnlich Stahl)	: K ⁻¹	13 × 10 ⁻⁶					
Wärmeleitfähigkeit	W/mK	0,4					
Dichte	g/cm ³	1,87					

Allgemeine Angaben

Abmessungen

Die Abmessungen der SKF Standard-Faserverbund-Buchsen entsprechen DIN ISO 4379:1995 bzw. ISO 4379:1993. Das garantiert eine problemlose Austauschbarkeit auch bei existierenden Lagerungen (z.B. Bronzebuchsen).

Toleranzen

Die Toleranzen der SKF Faserverbund-Buchsen sowie Passungsempfehlungen für Gehäuse und Welle sind in **Tabelle 2** aufgeführt. Der Bohrungsdurchmesser hat vor dem Einbau die Toleranzklasse C10. Nach dem Einbau in eine nach H7 bearbeitete Gehäusebohrung liegt die Toleranz des Bohrungsdurchmessers innerhalb D11.

Betriebsspiel

Das Betriebsspiel ergibt sich über die vorhandenen Toleranzen von Welle und Buchsenbohrung. Die entsprechenden Werte sind in **Tabelle 3** angegeben. Die Spielzunahme z.B. durch Verschleiß bleibt über die gesamte Gebrauchsdauer minimal.

Dichtungen

Bei Faserverbund-Buchsen ist die Fähigkeit des Werkstoffes, Fremdteilchen einzubetten, begrenzt. Daher muss die Gleitfläche gegen den Zutritt von Schmutz geschützt werden. Zur Abdichtung der Lagerstellen empfehlen wir unsere SKF Abstreifer (→ Bild. 1). Weitere Informationen über SKF Abstreifer sind auf Anfrage erhältlich.

Tabelle 2
Toleranzfeld
C10 (vor dem Einbau) D11 (nach dem Einbau) s8 h13
H7
h8

4 SKF

Schmierung

Dank der Gleitschicht aus neu entwickelten Fasern und Harzen sind die Faserverbund-Buchsen ideale Trockenläufer und benötigen weder Initial- noch Nachschmierung.

Werkstoff

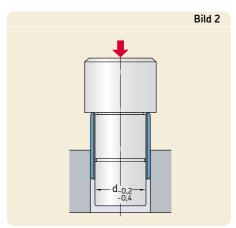
Die Werkstoffeigenschaften sind in **Tabelle 4** angegeben. Die SKF Faserverbund-Buchsen können an allen Seiten, außer der Gleitfläche, nach allgemein üblichen Verfahren bearbeitet werden.

Um den Einbau zu vereinfachen, können die Buchsen auch längs in zwei Hälften geteilt werden. Dazu empfehlen wir die Verwendung von diamantbeschichteten Trennscheiben und Kühlflüssigkeit. Dabei ist darauf zu achten, dass der Werkstoff nicht überhitzt, was ihn unbrauchbar machen würde.

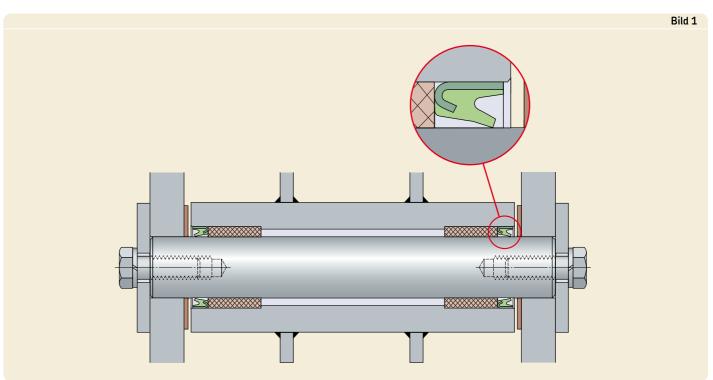
Empfohlene Wellen

Für SKF Faserverbund-Buchsen werden generell gehärtete Wellen empfohlen. Bei spezifischen Belastungen über 20 N/mm² sollte die Härte mindestens 50 HRC betragen. Die Oberflächenrauheit spielt ebenfalls eine wichtige Rolle. Empfohlen werden Rauheitswerte von von $R_a=0.2\,$ bis $0.4\,$ µm bzw. $R_z=1\,$ bis $2\,$ µm, wobei ein möglichst glattes Oberflächenprofil anzustreben ist.

Beste Resultate wurden mit hartverchromten, polierten sowie mit nitrierten Oberflächen erreicht.


Montage

Faserverbund-Buchsen werden genauso eingebaut wie traditionelle Gleitlager. Spezialwerkzeuge sind nicht erforderlich. SKF empfiehlt jedoch die Verwendung von Schlagkappen und bei größeren Stückzahlen auf den Anwendungsfall abgestimmte Einbauwerkzeuge in Verbindung mit einer Presse. Bewährt hat sich das hydraulische Einpressen oder Einziehen mit einem Montagedorn, dessen Durchmesser 0,2 bis 0,4 mm kleiner ist als der Nenndurchmesser der Buchsenbohrung (\rightarrow Bild 2).



Schnitt durch den Verbundwerkstoff Obere Lage: Kunststoff- (hell) und PTFE-Fasern (dunkel) der Gleitschicht im Querschnitt

Einbau einer SKF Faserverbund-Buchse mit Montagedorn

Lageranordnung mit SKF Faserverbund-Buchsen und Abstreifer

SKF 5

Berechnung

Die Leistungsfähigkeit der SKF Faserverbund-Buchsen hängt ab vom jeweiligen Einbaufall und dem Zusammenspiel von Belastung, Oberflächenrauheit und -härte, Gleitgeschwindigkeit, Temperatur und Abdichtung.

Diagramm 2 zeigt mögliche Kombinationen aus spezifischen Lagerbelastungen und Gleitgeschwindigkeiten. Die spezifische Lagerbelastung kann ermittelt werden aus:

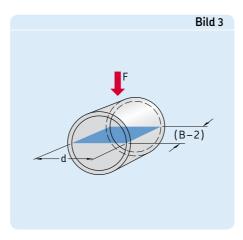
$$p = \frac{F}{\Delta}$$

Hierin sind

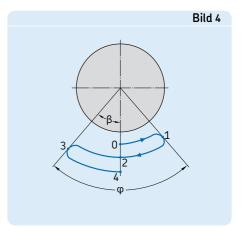
- p die spezifische Lagerbelastung, N/mm²
- F die Lagerbelastung, N
- A die projizierte, tragende Fläche, mm² (→ Bild 3 und Produkttabelle auf Seite 7)

Die Gleitgeschwindigkeit errechnet sich aus:

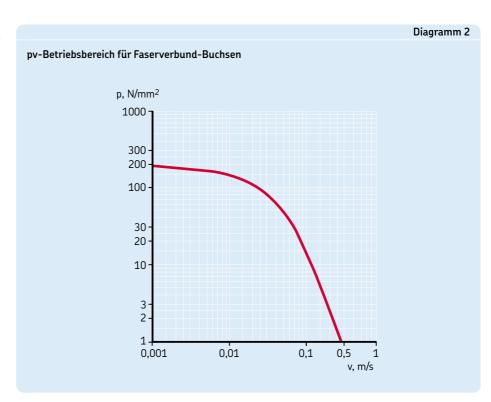
$$v = 5.82 \times 10^{-7} d\beta f$$

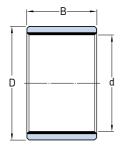

Hierin sind

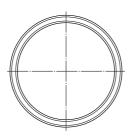
- v die Gleitgeschwindigkeit, m/s
- d der Bohrungsdurchmesser der Buchse,
- f die Schwenkfrequenz bzw. Drehzahl, min⁻¹
- α der halbe Schwenkwinkel, Grad
 (→ Bild 4). Eine vollständige
 Schwenkbewegung (von Punkt 0 bis Punkt
 4) ist gleich 4 β. Bei Drehbewegungen ist
 β = 90° einzusetzen.


Wenn die Werte für die spezifische Lagerbelastung und die Gleitgeschwindigkeit im pv-Diagramm unter der Kurvenlinie liegen, ist die Buchse für den Anwendungsfall geeignet. Unter günstigen Umständen sind auch Betriebsbereiche oberhalb der Kurvenlinie möglich, in diesem Fall ist aber Rücksprache mit unserem technischen Beratungsservice notwendig.

Bezeichnungsschema


SKF Faserverbund-Buchsen werden durch das Vorsetzzeichen PWM gekennzeichnet (P = Buchse, W = Faserverbund, M = metrisch). Dem folgen unverschlüsselt in Millimetern die Maße der Bohrung, des Außendurchmessers und der Breite, z.B. PWM 354130 mit d = 35 mm, D = 41 mm und B = 30 mm.


Projizierte tragende Fläche $A = d \times (B - 2)$



 φ = Schwenkwinkel = 2 β Eine vollständige Schwenkbewegung entspricht 4 β

6 SKF

Abme	Abmessungen		Gewicht	Kurzzeichen	Abmessungen			Gewicht	Kurzzeichen		
d	D	В	A ¹⁾			d	D	В	A ¹⁾		
mm			mm ²	kg	_				mm ²	kg	-
20	24 24 24	15 20 30	260 360 560	0,0039 0,0052 0,0078	PWM 202415 PWM 202420 PWM 202430	90	105 105 105	60 80 120	5 220 7 020 10 620	0,26 0,34 0,52	PWM 9010560 PWM 9010580 PWM 90105120
25	30 30 30	20 30 40	450 700 950	0,0081 0,012 0,016	PWM 253020 PWM 253030 PWM 253040	95	110 110 110	60 100 120	5 510 9 310 11 210	0,27 0,45 0,54	PWM 9511060 PWM 95110100 PWM 95110120
30	36 36 36	20 30 40	540 840 1 140	0,012 0,017 0,023	PWM 303620 PWM 303630 PWM 303640	100	115 115 115	80 100 120	7 800 9 800 11 800	0,38 0,47 0,57	PWM 10011580 PWM 100115100 PWM 100115120
35	41 41 41	30 40 50	980 1 330 1 680	0,020 0,027 0,034	PWM 354130 PWM 354140 PWM 354150	105	120 120 120	80 100 120	8 190 10 290 12 390	0,40 0,50 0,59	PWM 10512080 PWM 105120100 PWM 105120120
40	48 48 48	30 40 60	1 120 1 520 2 320	0,031 0,041 0,062	PWM 404830 PWM 404840 PWM 404860	110	125 125 125	80 100 120	8 580 10 780 12 980	0,41 0,52 0,62	PWM 11012580 PWM 110125100 PWM 110125120
45	53 53 53	30 40 60	1 260 1 710 2 610	0,035 0,046 0,069	PWM 455330 PWM 455340 PWM 455360	120	135 135 135	100 120 150	11 760 14 160 17 760	0,56 0,67 0,84	PWM 120135100 PWM 120135120 PWM 120135150
50	58 58 58	40 50 60	1 900 2 400 2 900	0,051 0,063 0,076	PWM 505840 PWM 505850 PWM 505860	130	145 145 145	100 120 150	12 740 15 340 19 240	0,61 0,73 0,91	PWM 130145100 PWM 130145120 PWM 130145150
55	63 63 63	40 50 70	2 090 2 640 3 740	0,056 0,069 0,12	PWM 556340 PWM 556350 PWM 556370	140	155 155 155	100 150 180	13 720 20 720 24 920	0,65 0,97 1,15	PWM 140155100 PWM 140155150 PWM 140155180
60	70 70 70	40 60 80	2 280 3 480 4 680	0,076 0,11 0,15	PWM 607040 PWM 607060 PWM 607080	150	165 165 165	120 150 180	17 700 22 200 26 700	0,83 1,05 1,25	PWM 150165120 PWM 150165150 PWM 150165180
65	75 75 75	50 60 80	3 120 3 770 5 070	0,10 0,12 0,16	PWM 657550 PWM 657560 PWM 657580	160	180 180 180	120 150 180	18 880 23 680 28 480	1,20 1,50 1,80	PWM 160180120 PWM 160180150 PWM 160180180
70	80 80 80	50 70 90	3 360 4 760 6 160	0,11 0,15 0,20	PWM 708050 PWM 708070 PWM 708090	170	190 190 190	120 180 200	20 060 30 260 33 660	1,25 1,90 2,10	PWM 170190120 PWM 170190180 PWM 170190200
75	85 85 85	50 70 90	3 600 5 100 6 600	0,12 0,16 0,21	PWM 758550 PWM 758570 PWM 758590	180	200 200 200	150 180 250	26 640 32 040 44 640	1,70 2,00 2,80	PWM 180200150 PWM 180200180 PWM 180200250
80	90 90 90	60 80 100	4 640 6 240 7 840	0,15 0,20 0,25	PWM 809060 PWM 809080 PWM 8090100	190	210 210 210	150 180 250	28120 33 820 47 120	1,75 2,10 2,95	PWM 190210150 PWM 190210180 PWM 190210250
85	95 95 95	60 80 100	4 930 6 630 8 330	0,16 0,21 0,26	PWM 859560 PWM 859580 PWM 8595100	200	220 220 220	180 200 250	35 600 39 600 49 600	2,20 2,45 3,10	PWM 200220180 PWM 200220200 PWM 200220250

¹⁾ Projizierte tragende Fläche.

5KF

7

The Power of Knowledge Engineering

In der über einhundertjährigen Firmengeschichte hat sich SKF auf fünf technische Kompetenzbereiche und ein breites Anwendungswissen spezialisiert. Auf dieser Basis liefern wir weltweit innovative Lösungen an Erstausrüster und sonstige Hersteller in praktisch allen Industriebranchen.

Unsere fünf technischen Kompetenzbereiche sind: Lager und Lagereinheiten, Dichtungen, Schmiersysteme, Mechatronik-Bauteile und ein breites Angebot an technischen Dienstleistungen, von 3D-Simulationen über Zustandsüberwachung bis hin zum Anlagenmanagement.

SKF ist ein weltweit führendes Unternehmen und garantiert ihren Kunden einheitliche Qualitätsstandards und universelle Produktverfügbarkeit.

Kataloge

CD: Interaktiver SKF Lagerungskatalog Internet: www.iec.skf.com.

Kataloge sind auch für SKF Gelenklager, Gelenkköpfe und Dichtungen erhältlich. Näheres erfahren Sie von Ihrem SKF Ansprechpartner oder SKF Vertragshändler.

® SKF ist eine eingetragene Marke der SKF Gruppe.

© SKF Gruppe 2008
Nachdruck, auch auszugsweise, nur mit unserer Genehmigung gestattet. Die Angaben in dieser Druckschrift wurden mit größter Sorgfalt auf ihre Richtigkeit hin überprüft. Trotzdem kann keine Haftung für Verluste oder Schäden irgendwelcher Art übernommen werden, die sich mittelbar oder unmittelbar aus der Verwendung der hier

enthaltenen Informationen ergeben.

Druckschrift **6242 DE** · Juni 2008

Diese Druckschrift ersetzt Druckschrift 5187 G.

Gedruckt in Schweden auf umweltfreundlichem Papier.